If all of the files in _kaggle_data
are in csv format (excluding the meta directory) then this function will load all of the kaggle data into the current environment (or the environment of your choosing) via readr::read_csv()
.
kgl_flow_load(..., envir = parent.frame())
Arguments passed on to readr::read_csv
file
Either a path to a file, a connection, or literal data (either a single string or a raw vector).
Files ending in .gz
, .bz2
, .xz
, or .zip
will
be automatically uncompressed. Files starting with http://
,
https://
, ftp://
, or ftps://
will be automatically
downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as
literal data, the input must be either wrapped with I()
, be a string
containing at least one new line, or be a vector containing at least one
string with a new line.
Using a value of clipboard()
will read from the system clipboard.
quote
Single character used to quote strings.
col_names
Either TRUE
, FALSE
or a character vector
of column names.
If TRUE
, the first row of the input will be used as the column
names, and will not be included in the data frame. If FALSE
, column
names will be generated automatically: X1, X2, X3 etc.
If col_names
is a character vector, the values will be used as the
names of the columns, and the first row of the input will be read into
the first row of the output data frame.
Missing (NA
) column names will generate a warning, and be filled
in with dummy names ...1
, ...2
etc. Duplicate column names
will generate a warning and be made unique, see name_repair
to control
how this is done.
col_types
One of NULL
, a cols()
specification, or
a string. See vignette("readr")
for more details.
If NULL
, all column types will be inferred from guess_max
rows of the
input, interspersed throughout the file. This is convenient (and fast),
but not robust. If the guessed types are wrong, you'll need to increase
guess_max
or supply the correct types yourself.
Column specifications created by list()
or cols()
must contain
one column specification for each column. If you only want to read a
subset of the columns, use cols_only()
.
Alternatively, you can use a compact string representation where each character represents one column:
c = character
i = integer
n = number
d = double
l = logical
f = factor
D = date
T = date time
t = time
? = guess
_ or - = skip
By default, reading a file without a column specification will print a
message showing what readr
guessed they were. To remove this message,
set show_col_types = FALSE
or set `options(readr.show_col_types = FALSE).
col_select
Columns to include in the results. You can use the same
mini-language as dplyr::select()
to refer to the columns by name. Use
c()
to use more than one selection expression. Although this
usage is less common, col_select
also accepts a numeric column index. See
?tidyselect::language
for full details on the
selection language.
id
The name of a column in which to store the file path. This is
useful when reading multiple input files and there is data in the file
paths, such as the data collection date. If NULL
(the default) no extra
column is created.
locale
The locale controls defaults that vary from place to place.
The default locale is US-centric (like R), but you can use
locale()
to create your own locale that controls things like
the default time zone, encoding, decimal mark, big mark, and day/month
names.
na
Character vector of strings to interpret as missing values. Set this
option to character()
to indicate no missing values.
quoted_na
Should missing values inside quotes be treated as missing values (the default) or strings. This parameter is soft deprecated as of readr 2.0.0.
comment
A string used to identify comments. Any text after the comment characters will be silently ignored.
trim_ws
Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it?
skip
Number of lines to skip before reading data. If comment
is
supplied any commented lines are ignored after skipping.
n_max
Maximum number of lines to read.
guess_max
Maximum number of lines to use for guessing column types.
Will never use more than the number of lines read.
See vignette("column-types", package = "readr")
for more details.
name_repair
Handling of column names. The default behaviour is to
ensure column names are "unique"
. Various repair strategies are
supported:
"minimal"
: No name repair or checks, beyond basic existence of names.
"unique"
(default value): Make sure names are unique and not empty.
"check_unique"
: no name repair, but check they are unique
.
"universal"
: Make the names unique
and syntactic.
A function: apply custom name repair (e.g., name_repair = make.names
for names in the style of base R).
A purrr-style anonymous function, see rlang::as_function()
.
This argument is passed on as repair
to vctrs::vec_as_names()
.
See there for more details on these terms and the strategies used
to enforce them.
num_threads
The number of processing threads to use for initial
parsing and lazy reading of data. If your data contains newlines within
fields the parser should automatically detect this and fall back to using
one thread only. However if you know your file has newlines within quoted
fields it is safest to set num_threads = 1
explicitly.
progress
Display a progress bar? By default it will only display
in an interactive session and not while knitting a document. The automatic
progress bar can be disabled by setting option readr.show_progress
to
FALSE
.
show_col_types
If FALSE
, do not show the guessed column types. If
TRUE
always show the column types, even if they are supplied. If NULL
(the default) only show the column types if they are not explicitly supplied
by the col_types
argument.
skip_empty_rows
Should blank rows be ignored altogether? i.e. If this
option is TRUE
then blank rows will not be represented at all. If it is
FALSE
then they will be represented by NA
values in all the columns.
lazy
Read values lazily? By default, this is FALSE
, because there
are special considerations when reading a file lazily that have tripped up
some users. Specifically, things get tricky when reading and then writing
back into the same file. But, in general, lazy reading (lazy = TRUE
) has
many benefits, especially for interactive use and when your downstream work
only involves a subset of the rows or columns.
Learn more in should_read_lazy()
and in the documentation for the
altrep
argument of vroom::vroom()
.
Environment to put the loaded kaggle data.
Nothing.
Other Kaggle Flow:
kgl_flow_competition_info()
,
kgl_flow_leaderboard()
,
kgl_flow_meta()
,
kgl_flow()
if (FALSE) {
kgl_flow("titanic")
kgl_flow_load()
}